Physical Sciences

Explore Physical Sciences

Yuki Fuseya | Exploring Turing Patterns at Atomic Levels

Yuki Fuseya | Exploring Turing Patterns at Atomic Levels

Patterns can be found across the entire natural world – from the spots on a leopard’s coat to stripes in mineral deposits deep underground. Such motifs are better known as Turing patterns – named after the famous mathematician and codebreaker, Alan Turing, who proposed the theory behind them. Turing patterns are often found on large scales, but they become much rarer at smaller scales, with very few known examples at microscopic and atomic scales. Aharon Kapitulnik and Yuki Fuseya have revealed a new atomic-scale Turing pattern, which arises in an atom-thick layer of bismuth atoms.

read more
Professor Valerii Vinokur – Professor Anna Razumnaya – Professor Igor Lukyanchuk | Reinventing the Capacitor

Professor Valerii Vinokur – Professor Anna Razumnaya – Professor Igor Lukyanchuk | Reinventing the Capacitor

Modern microelectronics is currently facing a profound challenge. The demand for even smaller and more closely packed electronics has hit a stumbling block: the power emitted in these devices releases more heat than can be efficiently removed. Now, the Terra Quantum team proposes a solution based on the seemingly counterintuitive phenomenon of ‘negative capacitance’.

read more
Dr Helen Greenwood Hansma | Energy: A Clue to the Origins of Life

Dr Helen Greenwood Hansma | Energy: A Clue to the Origins of Life

Before the first living organisms were brought into being, molecules were already moving and changing. Many energy sources, including light and heat from the sun, were available to provide the energy needed to drive chemical reactions. Mechanical energy, which describes the energy of motion, was also readily available before life’s emergence. Dr Helen Greenwood Hansma from the University of California in Santa Barbara explores how mechanical energy could have driven the processes that gave rise to early life.

read more
Eric Hinterman | Optimising Oxygen Production on Mars

Eric Hinterman | Optimising Oxygen Production on Mars

The first human mission to Mars may not be far away, but many preparations still need to be made to ensure the safety of crews once they arrive. One of the key requirements of these missions will be producing a steady supply of oxygen. This will allow crews to survive inside their habitats on the Martian surface, while also providing propellant for a Mars Ascent Vehicle, allowing them to return home.

read more
Dr Albert Rimola – Exploring the Surface Chemistry of Interstellar Dust

Dr Albert Rimola – Exploring the Surface Chemistry of Interstellar Dust

It may be surprising to know, that you – and all other mammals – are technically cynodonts. The first cynodonts appeared approximately 260 million years ago as small creatures about the size of a house cat. A particular group of cynodonts evolved to become more ‘mammal-like’, eventually evolving into the first true mammals. Dr Jennifer Botha from the National Museum, Bloemfontein in South Africa studies the anatomy and life history of specimens along the cynodont–mammalian transition, to gain key insights into the origins and evolution of mammals.

read more
Understanding Astrochemistry

Understanding Astrochemistry

Over the past few decades, astronomers have learnt more and more about the planets, moons, and asteroids of our Solar System – but we still have much to learn about the materials they are made from. For hundreds of years, we have used chemistry to study such materials on Earth, but there is no guarantee that they will behave in the same way in space – where they can exist in environments ranging from harsh, airless vacuums, to strange and exotic atmospheres.

read more
Dr Albert Rimola – Exploring the Surface Chemistry of Interstellar Dust

Exploring the Surface Chemistry of Interstellar Dust

Interstellar space may seem like the last place you would look when searching for the chemical origins of life. Yet on the surfaces of tiny dust grains within this vast expanse, complex chemical reactions are continually occurring, which likely played a key role in establishing the rich diversity of complex molecules we observe in the solar system today. In a new study, astrochemists in Spain and Italy, led by Albert Rimola at the Autonomous University of Barcelona, examine how advanced simulation techniques can be used to study these important processes on atomic scales.

read more

Stay Up To Date With SciTube

 

Subscribe now

* indicates required


Follow Us On: